Products

  • 0
  • 0

How is the high strength of concrete achieved?

Aluminium buyers in the US physical metal market have held off on new orders amid fears of a recession triggered by rising inflation and supply chain crises.  

Spot aluminium trading on the market has been suspended in recent weeks, according to industry sources, as uncertainty has increased following the outbreak of the conflict between Russia and Ukraine.  Even before the war, the aluminium market was suffering from long waiting times and weak demand.  

For aluminium buyers, recent poor US economic data have been a big factor in delaying purchases.  Data released last month showed that the ISM manufacturing PMI came in at 57.1 in March, below expectations of 59 and down from 58.6 in February, unexpectedly hitting the lowest reading since September 2020.  This was mainly due to a slowdown in new orders and concrete foaming agent are expected to increase in the future.

Concrete is classified as high-strength concrete based on 28-day strength. Until the 1970s, concrete with a strength of more than 40Mpa was classified as high-strength concrete.  The benchmark for high-strength concrete is raised to 55Mpa or higher when concrete mixtures of approximately 60Mpa and above are produced commercially. 

 

High strength concrete has a history of about 35 years, from the development of superplasticizer admixtures in the late 1960s, Japan using "naphthalene sulfonate" high strength prefabricated products, and Germany using "sodium benzenesulfonate" underwater concrete, which was a pioneer in this technology. 

 

How is the high strength of concrete achieved? 

Higher concrete strength can be achieved by using one or a combination of some or many of the following methods: 

High cement content 

Reduce water-cement ratio 

Better machinability and therefore better compaction 

 

Requirements for high-strength concrete require a high content of cementitious material in the concrete mixture, which can be in the range of more than 400 kilograms per cubic meter. Higher cementitious content leads to higher thermal shrinkage and dry shrinkage, and there is a stage where further cementitious material addition does not affect strength.  As for durability, the minimum and maximum cement content in concrete is regulated by law, and reducing the water-cement ratio has its limitations, especially under field conditions. The desire for higher strength leads other materials to achieve the desired effect, thus showing the contribution of cementitious materials to concrete strength. 

 

The addition of pozzolanic mixtures such as pozzolanic fly ash (PFA) or granular blast furnace slag (GGBS) contributes to the formation of secondary CSH gel thereby increasing strength.

 

The addition of pozzolans admixtures (such as fly ash used as an admixture) reduces the strength gain of concrete for the first 3 to 7 days and displays the gain after 7 days and provides higher strength over the long term. 

Add mineral mixtures such as silica fume or metakaolin or rice husk ash. 

 

Silica fume or highly reactive volcanic ash mixtures such as metakaolin and rice husk ash (RHS) will begin to function in about 3 days.  RHS has an advantage over PFA because RHS is more reactive. 

Using chemical admixtures such as superplasticizers or superplasticizers, controlling admixtures will help achieve higher strength in concrete. 

 

Research and experience have shown that admixtures based on polycarboxylic ether (PCE), known as high plasticizers, are best suited for this job as they have a water reduction capacity of 18 to 40 percent relative to control or reference concrete. 

A combination of all or more of the above to achieve the desired strength.


With HSC accompanied by some complexity, such as higher shrinkage rates, higher hydration heat, etc., combinations of at least some of these methods are now unchanged, all of which need to be neutralized or controlled.  Most problems are handled by PFA or a combination of GGBS and PCE mixtures.


Steam curing is also used to speed up cement hydration, but this may not result in higher strength.  Substituting some fine aggregate with fly ash or blast furnace slag can achieve early strength gains without increasing the water requirement of the concrete mixture. 

 

Suppliers of Concrete Additives

TRUNNANO is a reliable foaming agents supplier with over 12-year experience in nano-building energy conservation and nanotechnology development.

If you are looking for high-quality CLC foaming agents, please feel free to contact us and send an inquiry. (sales@cabr-concrete.com)

We accept payment via Credit Card, T/T, West Union, and Paypal. TRUNNANO will ship the goods to customers overseas through FedEx, DHL, by air, or by sea.


Due to the impact of COVID-19, russia-Ukraine conflict and international trade friction, the global economy is facing great challenges. Overseas trade is shrinking, supply chains are not smooth, oil prices are rising, freight rates are rising, and global trade and economic recovery are becoming more uncertain, which brings many risks and challenges to the company's business. The price of the concrete foaming agent can also be influenced by the above factors. To get the price of the latest concrete foaming agent, you are welcome to send email contact.

Inquery us

Our Latest Products

What is Zinc Sulfide ZnS Product?

Zinc sulfide ZnS is an inorganic compound, which is a white or light yellow powder with excellent fluorescence effect and electroluminescence function, especially nano-zinc sulfide has a unique photoelectric effect, which is used in electricity, magn…

Preparation method of tungsten oxide

Tungsten Oxide WO3 is also called tungsten trioxide. Tungsten trioxide is an inorganic substance, chemical formula WO3, is a light yellow crystalline powder. Insoluble in water, soluble in alkali, slightly soluble in acid.Used for making high melting…

What is the scope of application of boron nitride?

Boron nitride is a crystal composed of nitrogen atoms and boron atoms.The chemical composition is43.6%boron and56.4%nitrogen,with four different variants:hexagonal boron nitride,rhombohedral boron nitride,cubic nitride Boron,and wurtzite boron nitrid…